Année Scolaire: 2017-2018

Série P7: ENERGIES MISES EN JEU DANS UN CIRCUIT ELECTRIQUE

EXERCICE 1

On considère le circuit électrique schématisé ci-contre comportant :

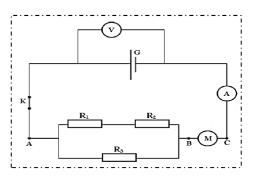
- **G**: un générateur de f.e.m **E= 12V** et de résistance interne **r**;
- (M): un moteur de f.c.e.m E' et de résistance interne r';
- \mathbf{R}_1 , \mathbf{R}_2 et \mathbf{R}_3 résistors tels que : \mathbf{R}_1 = \mathbf{R}_2 = $\mathbf{5}\Omega$ et \mathbf{R}_3 = $\mathbf{3}\mathbf{R}_1$;
- **K**: un interrupteur; (A): un ampèremètre et (V): un voltmètre.
- <u>1-</u> **K** est ouvert. Quelles sont les indications du voltamètre et de l'ampèremètre ? Justifier.
- $\underline{2}$ Le moteur est bloqué, l'ampèremètre indique I_1 = 1A et le voltamètre indique U_1 = 8V.

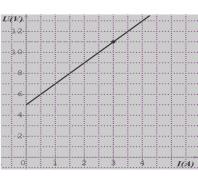
- **2.b** Calculer l'énergie électrique **E**_e reçue par la portion A C du circuit pendant 02 min.
- **2.c** Montrer que la résistance équivalente vue entre les points A et B est $\mathbf{R}_{eq} = \frac{6}{5} \mathbf{R}_1$. En déduire la résistance interne \mathbf{r}' du moteur.
- **2.d-** Calculer la puissance dissipée par effet Joule dans le circuit.
- 3- Le moteur fonctionne maintenant normalement et l'ampèremètre indique I'= 0,8A.
 - 3.a Déterminer la tension UG au borne du générateur et UM aux bornes du moteur.
 - 3.b- Calculer la f.c.e.m E' du moteur.
 - 3.c- Calculer la puissance mécanique développée par le moteur ainsi que son rendement ρ .

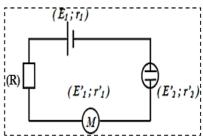
EXERCICE 2

- <u>1</u>- L'étude d'un moteur a permis de tracer le graphe U= f(I) linéarisé représenté ci-contre. U est la tension électrique aux bornes du moteur et I l'intensité du courant qui le traverse.
 - **<u>1.a</u>** Que représente cette courbe pour le moteur ?
 - **1.b** Faire le schéma du circuit électrique permettent de tracer ce graphe.
 - <u>1.c</u>- Déterminer, à partir du graphe, les grandeurs caractéristiques (E'1 et r'1) de ce moteur en précisant leur noms.
- **2-** Ce moteur est branché dans le circuit ci-dessous. On donne : (E₁= 15V ; r_1 = 1 Ω) ; (E'₂= 7V ; r'_2 = 3 Ω) ; R= 4 Ω .
 - 2.a- Déterminer l'intensité I du courant débité par le générateur.

2.b-Calculer:


- l'énergie mécanique du moteur pendant deux minutes.
- la puissance chimique de l'électrolyseur. (0,5 pt)
- la puissance totale du générateur. (0,5 pt)
- la puissance dissipée par effet Joule dans l'électrolyseur.
- le rendement du circuit. (0,5 pt)
- <u>3</u>- On introduit dans le circuit précédant un deuxième générateur G_2 (E_2 ; r_2) associé en série avec le générateur G_1 . On note l'l'intensité du courant passant dans le circuit. La tension dans r_2 l' est égale à 3V. Le rendement de ce deuxième générateur est $\rho_2 = 0.88$.
 - 3.a Déterminer la valeur de E2.
 - <u>3.b</u>- Le rendement du moteur est $\rho_1 = 0,5$. Monter que $I' = \frac{E_1'}{r_1'} \left(\frac{1}{\rho_1'} 1\right)$. En déduire la valeur de r_2 .
- 4- On inverse les pôles du deuxième générateur G2.
 - 4.a- Déterminer des grandeurs caractéristiques (E, r) du générateur équivalent. (01 pt)
 - **4.b** Le moteur et l'électrolyseur peuvent-ils fonctionner ? Justifier.


EXERCICE 3


PARTIE A

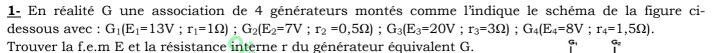
Au bornes d'un conducteur ohmique de résistance $R = 1.8\Omega$, on maintient une d.d.p de 14V.

- <u>1</u>- Calculer l'intensité du courant.
- **2** Calculer la puissance électrique reçue par le dipôle et la quantité de chaleur cédée au milieu extérieur pendant 15mn.
- <u>3</u>- Cette quantité de chaleur sert à élever la température de 400g d'eau prise initialement à 18°C. Quelle sera la température finale si l'opération se fait avec un rendement de 0,88 ? $c_e = 4180J/Kg.K$.

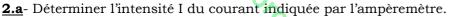
PARTIE B

 $\underline{\mathbf{4}}$ - Dans un calorimètre contenant une masse d'eau à la température initiale θ_i , on plonge un conducteur ohmique élément d'un circuit comportant un ampèremètre. On effectue ainsi plusieurs expériences. Pour chacune d'elle on fait passer dans le conducteur ohmique un courant d'intensité I pendant Δt = 3 min.

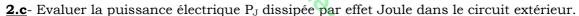
Expérience	1	2	3	4	5	6
I (A)	0,5	0,7	0,9	1,1	1,3	1,5
I ² (A ²)	0,25	0,49	0,81	1,21	1,69	2,25
Δθ (°C)	0,85	1,70	2,80	4,10	5,80	7,70


4.a- Tracer le graphe représentatif de $\Delta\theta$ en fonction de I². Echelle : 1cm→0,20 (A²) ; 1cm→0,77 (°C)

4.b- A partir du graphe soigneusement tracé, (point par point) déterminer la valeur de la résistance R du conducteur ohmique. **NB**: Pour le système (calorimètre – eau - accessoires) C = 420J.°C


EXERCICE 4

On considère le circuit électrique schématisé ci-contre :


- ❖ G est un générateur de f.e.m E et de résistance interne r ;
- ❖ M est un moteur de f.c.e.m E'₁= 2,5V et de résistance interne r'_{1} = 1,5 Ω ;
- \bullet R₁ et R₂ sont des résistors de résistances respectives 3Ω et 6Ω .
- \star K₁ et K₂ sont des interrupteurs.

 $\underline{\textbf{2}}$ - On prend pour la suite de l'exercice E= 12V et r= 2,5 Ω . On ferme l'interrupteur K_1 et on laisse K_2 ouvert.

2.b- Calculer la puissance électrique P_G , fournie par le générateur au circuit extérieur.

2.d- Calculer la puissance électrique Pu, transformée en puissance utile par le circuit extérieur.

2.e- Si on bloque le moteur, est-ce que l'ampèremètre indiquera une autre valeur ? Si oui la calculer.

 $\underline{\mathbf{3}}$ - On ferme les deux interrupteurs K_1 et K_2 . L'ampèremètre indique une nouvelle valeur I'. Le résistor R_1 dissipe 28,8 J en une minute de fonctionnement.

3.a Déterminer la valeur de l'intensité I'1 du courant qui traverse le résistor R1. En déduire I'2 et I'.

3.b- Calculer la valeur de la d.d.p U_{AB} et celles des tensions aux bornes du générateur, du moteur et de l'électrolyseur.

EXERCICE 5

Un moteur est alimenté par un générateur de f.é.m. constante E=110V. Il est en série avec un ampèremètre et la résistance totale du circuit vaut $R=10\Omega$.

 $\underline{\mathbf{1}}$ Le moteur est muni d'un frein qui permet de bloquer son rotor; quelle est alors l'indication de l'ampèremètre?

<u>2</u> On desserre progressivement le frein ; le rotor prend un mouvement de plus en plus rapide tandis que l'intensité du courant diminue. Justifier cette dernière constatation.

3 Lorsque le moteur tourne, il fournit une puissance mécanique P_u

 ${\bf 3.a}$ Etablir l'équation qui permet de calculer l'intensité I dans le circuit en fonction de la puissance fournie P_u

 ${\bf 3.b}$ Montrer que si la puissance Pu est inférieure à une valeur P_0 que l'on déterminera, il existe deux régimes de fonctionnement du moteur.

 $\underline{\textbf{3.c}}$ Pour P_u = 52,5W, calculer: les intensités du courant; les f.c.é.m. E' du moteur ainsi que les rendements de l'installation, dans les deux cas possibles.

 $\underline{\mathbf{4}}$ A partir de l'équation établie au 3°) a), écrire l'équation donnant la puissance fournie P_u en fonction de l'intensité I et représenter les variations de la fonction P_u = f (I).

Echelles : en abscisses : 1cm pour 1A ; en ordonnées : 4cm pour 100W.

Retrouver, grâce à la courbe, les résultats des questions 3°) b) et c)

<u>AU TRAVAIL!</u>

