CHIMIE

EXERCICE 1

- 1. On dissout une masse d'hydroxyde de sodium NaOH dans 200 mL d'eau pure pour obtenir une solution aqueuse S_B de pH = 13,6 à 25 °C.
 - 1.1. Ecrire l'équation de dissolution de l'hydroxyde de sodium dans l'eau.
 - 1.2. Comparer les concentrations des ions H₃O⁺ et OH⁻ dans la solution S_B.
 - 1.3. Trouver la valeur de la concentration C_B de la solution S_B et en déduire celle de la masse m.
- 1.4. On prépare à partir de la solution S_B une solution S_B de volume V' = 60 mL et de concentration $C_B' =$ 10⁻¹ mol.L⁻¹. Déterminer le volume V de la solution S_B et le volume V_e d'eau pure utilisée pour préparer S_B'.
- 2. L'acide nitrique HNO₃ est un acide fort.
 - 2.1. Ecrire l'équation-bilan de la réaction de dissolution d'acide nitrique dans l'eau.
- 2.2. Un flacon commercial de 1 L d'acide nitrique de densité 1,2 contient en masse 76 % de HNO₃. Quelle est la concentration C de l'acide nitrique ?
- 2.3. On veut préparer 2 L d'une solution d'acide nitrique de pH = 1,5. Quel volume de solution commerciale faut-il utiliser pour cela?
- 3. On dispose d'une solution S_a d'acide chlorhydrique de concentration C_a = 5.10^{-2} mol/L. Pour obtenir 1 L cette solution σ_a

 slumique ρ = 1190 g/L à 30 % en

 Déterminer la valeur du volume V₀ de cette solution Sa on dilue un volume Vo d'une solution commerciale d'acide chlorhydrique de masse volumique ρ = 1190 g/L à 30 % en masse d'acide chlorhydrique.

EXERCICE

Exercice 2 (03 points)

L'iodure d'hydrogène est un acide fort. On dispose d'une solution commerciale dénommée solution d'acide iodhydrique de densité d= 1,26 et de pourcentage massique d'acide pur 28%.

- 2.1- Ecrire l'équation-bilan de la réaction de l'iodure d'hydrogène avec l'eau. (0,25 point)
- 2.2-A partir de cette solution commerciale, on désire préparer 1L d'une solution Sa d'acide iodhydrique de concentration Ca= 5,0.10⁻²mol.L⁻¹.
 - 2.2.1- Déterminer le volume V₀ de la solution commerciale qu'il faut prélever. (0,5 point)
 - 2.2.2- Décrire le mode opératoire pour préparer la solution Sa. (Quelques schémas clairs et annotés sont suffisants). (0,5 point)
 - 2.2.3- Quel est le pH de la solution ainsi préparée. (0,25 point)
- 2.3- A 20 mL de la solution d'acide iodhydrique ainsi préparée, on ajoute 25mL d'une solution centimolaire d'hydroxyde de calcium.
 - **2.3.1-** Ecrire l'équation-bilan de la réaction qui se produit. (0,25 point).
 - 2.3.2- Déterminer le pH du mélange. (0,5 point)
 - 2.3.3- Déterminer la concentration des diverses espèces en solution. (01 point)

$$M(H) = 1g.mol^{-1}$$
; $M(I) = 127g.mol^{-1}$

EXERCICE

On considère une solution aqueuse d'acide benzoïque C₆H₅COOH de concentration molaire volumique $C_a = 5,0.10^{-2} \text{ mol.L}^{-1}$. (On posera p $C_a = -\log C_a$ et $C_a = 10^{-pCa}$). La constante d'acidité de cet acide est $K_a = 10^{-pCa}$ 6,31.10⁻⁵.

1) Calculer le pK_a de cet acide ainsi que le pC_a.

- 2) En considérant que la quantité de matière d'ions OH⁻ présents est négligeable devant celle des ions H₃O⁺ d'une part et puis d'autre part C_a très grande devant $[H_3O^{\dagger}]$, Montrer que $[H_3O^{\dagger}] = \sqrt{K_aC_a}$; en déduire l'expression du pH de la solution et le calculer.
- 3) Définir le degré d'ionisation d'un acide. Le calculer pour la solution benzoïque.
- 4) On considère, de façon plus générale, un acide de formule AH, de concentration molaire volumique Ca et de constante d'acidité Ka.

$$\underline{4.a}$$
- En posant x = $[H_3O^+]$, établir l'équation : $x^2 + K_ax - K_a C_a = 0$

<u>4.b</u>- Dans le cas où la concentration est très inférieure à K_a ($\frac{Ca}{Kn}$ << 1), montrer que $[H_3O^+] = C_a$ et en

déduire une expression simple du pH. Que vous suggère ce résultat ?

4.c- Dans le cas inverse (
$$\frac{Ca}{Ka} >> 1$$
), montrer que : pH = $\frac{1}{2}$ (pK_a + pC_a). Conclure.

(D'après Bac CE 1988)

EXERCICE

Exercice 2 (04 points)

On donne les masses molaires atomiques : $H=1g .mol^{-1}$; $N=14 g.mol^{-1}$; $C\ell=35,5g.mol^{-1}$.

On dispose des produits suivants : solution d'ammoniac de concentration C₀= 1mol.L⁻¹ ; chlorure d'ammonium anhydre (NH₄Cℓ).

On souhaite préparer deux solutions aqueuses de même concentration C= 0,1 mol.L⁻¹, l'une notée S₁ de chlorure d'ammonium anhydre, et l'autre, notée S2, d'ammoniac.

- 2.1- Déterminer la masse de soluté à utiliser pour préparer 200mL de solution S₁.
- 2.2- Décrire succinctement le mode opératoire pour préparer 200mL de S2. Préciser en particulier le volume de la solution mère à utiliser. (0,75 point)
- 2.3- On mélange un volume V_1 = 10mL de la solution de S_1 et un volume V_2 =20mL de la solution S_2 . Le pH du mélange est égal à 9,6.
- 2.3.1 Déterminer les concentrations des différentes espèces chimiques présentes en solution dans ce mélange. (01 point)

$$\frac{[NH_3]}{[NH_4^+]} = \frac{V_2}{V_1}$$
2.3.2 - A partir des valeurs trouvées, vérifier l'égalité : $\frac{[NH_3]}{[NH_4^+]} = \frac{V_2}{V_1}$ (0,5 point)
2.4- On admettra, pour la suite de l'exercice, que ce résultat (obtenu à la question 2.3.2) rest

2.4- On admettra, pour la suite de l'exercice, que ce résultat (obtenu à la question 2.3.2) reste valable tant $[NH_3]$

que
$$0.1 < \frac{[N H_3]}{[N H_4^*]} < 10$$

On réalise alors différents mélanges des solutions S₁ et S₂ de volumes respectifs V₁ et V₂ et on mesure les pH de ces mélanges.

On obtient le tableau de mesure suivant :

V ₁ (mL)	20	20	20	20	5	10	15
V ₂ (mL)	5	10	15	20	20	20	20
рН	8,70	9,00	9,18	9,30	9,90	9,60	9,43
[N H,] log([N H,*])							

2.4.1- Compléter le tableau puis tracer la courbe pH= $f(log([NH_{4}^{\frac{1}{2}}]))$ avec une échelle convenablement choisie et que l'on précisera. (01,25 point)

2.4.1- A partir de la courbe, déterminer le pK_A de couple de l'ammoniac. (0,25 point)

EXERCICE 1 (BAC S1 2016)

<u>2-1</u> La solucitrine est un médicament indiqué pour le traitement des maux de gorge. Ce médicament contient de l'acide ascorbique de formule brute $C_6H_8O_6$.

On prépare une solution So en dissolvant un comprimé de «solucitrine 500» dans 100mL d'eau distillée. On prélève 20mL de cette solution So que l'on dose par une solution d'hydroxyde de sodium de concentration $C_b = 5,0.10^{-2} \text{mol.L}^{-1}$. La mesure du pH du milieu réactionnel a permis d'obtenir le tableau suivant :

V _b (mL)	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0
рН	3,63	3,74	3,83	3,92	4,01	4,10	4,19	4,28
[H ₃ O ⁺] (mol.L ⁻¹)								
$\frac{1}{Vb}$ (mL ⁻¹)								

<u>2-1-1</u> Ecrire l'équation de la réaction qui a lieu entre l'acide ascorbique, noté AH, et la solution d'hydroxyde de sodium, au cours du dosage. **(0,25 point)**

2-1-2 Définir l'équivalence acido-basique. (0,25 point)

<u>2-2</u> On note na la quantité da matière d'acide restant dans le milieu réactionnel, V_{bE} le volume de solution d'hydroxyde de sodium versé dans ce milieu réactionnel à l'équivalence.

<u>2-2-1</u> Etablir la relation $n_a = C_b (V_{bE} - V_b)$ (0,25 point

<u>2-2-2</u> Vous aidant de la relation établie en (2-2-1) exprimer, en fonction de V_b et V_{bE} le rapport $\frac{[AH]}{[A^-]}$

<u>2-2-3</u> Exprimer ensuite la concentration [H_3O^2] en fonction de V_b , V_{bE} et la constante d'acidité Ka du couple AH/A- . (0,25 point)

<u>**2-3**</u> Exploitation du tableau de valeurs.

2-3-1 Recopier puis compléter le tableau de valeurs. (0,25 point)

<u>2-3-2</u> Tracer la courbe $[H_3O^+] = f(\frac{1}{V_h})$ (0,5 point)

2-3-3 Déterminer, graphiquement, le pKa du couple AH/A- ainsi que le volume V_{bE}. (0,5 point)

<u>2-4</u> calculer la masse d'acide ascorbique contenue dans un comprimé de solucitrine. Justifier l'appellation « solucitrine 500 ».

Exercice 1:

On dose 20cm^3 d'une solution d'un acide AH de concentration molaire C_A par une solution de soude de concentration molaire $C_B=0,1\text{mol.L}^{-1}$. Le suivi du pH après chaque ajout de soude a donné les résultats suivants :

V(cm ³)	0	2	4	6	8	9,9	10	10,1	11	13
рН	3,2	4,3	4,7	5,1	5,5	6,9	8,7	10,5	11	11,5

1.1. Tracer le graphe pH=f(V) en choisissant convenablement une échelle que l'on précisera.

 $\underline{1.2}$. L'observation de la courbe permet-elle de préciser la force de l'acide. Justifier la réponse et calculer la concentration C_A de la solution d'acide.

<u>1.3</u>. Déterminer graphiquement le pK_A du couple AH/A^- . Comment appelle-t-on le mélange obtenu lorsque le pH est très voisin du pK_A ? Quelles sont les propriétés de ce mélange?

- <u>1.4</u>. Calculer les concentrations des différentes espèces chimiques en solution lorsque le pH du mélange est 4,3.
- 1.5. On désire effectuer le même dosage en utilisant un indicateur coloré. A cet effet, on dispose de

Trois indicateurs dont les zones de virage sont :

Hélianthine: 3,1-4,4; bleu de bromothymol: 6,0-7,6; phénolphtaléine: 8,0-10.

Lequel de ces indicateurs colorés est-il le plus approprié pour ce type de dosage ? Justifier la réponse.

PHYSIQUE

EXERCICE

6 Abondances relatives du carbone 12 et du carbone 13

La teneur en carbone 14 étant très faible dans le carbone naturel, on se propose de déterminer l'abondance isotopique en carbone 12 et en carbone 13 du dioxyde de carbone provenant de la combustion complète d'un échantillon organique par la méthode de la spectrométrie de masse.

Dans le spectromètre de masse schématisé ci-dessous, le dioxyde de carbone est introduit dans la chambre d'ionisation (I) qui produit des ions $^{12}CO_2^+$ de masse m_1 et des ions $^{13}CO_2^+$ de masse m_2 .

1-) Accélération des ions

Les ions ¹²CO₂⁺ et ¹³CO₂⁺ produits par la chambre d'ionisation pénètrent en O dans la chambre d'accélération (II) où ils accélérés par une tension U= VP – VP' établie entre deux plaques P et P'. On se placera dans le référentiel terrestre supposé galiléen et on négligera dans toute la suite l'action de la pesanteur.

La vitesse des ions en O est supposée négligeable, exprimer la vitesse V_O d'un ion de masse m et de charge q à la sortie O' de chambre d'accélération en fonction de U, m et q.

1-2) Montrer qu'en O' les vitesses respectives V_{01} et V_{02} des ions $^{12}CO_2^+$ et $^{13}CO_2^+$ vérifient la relation

 $m_1 V_{01}^2 = m_2 V_{02}^2$.

1-3) Calculer ses vitesses.

I – Chambre d'ionisation
II – chambre de déviation
III – chambre de déviation
C₁ et C₂ sont des collecteurs

Données: $m_1 = 7.31.10^{-26} kg$; $m_2 = 7.47.10^{-26} kg$; $U = 4.10^3 V$; $e = 1.6.10^{-19} C$.

2-) Déviation des ions

Les ions ¹²CO₂⁺ et ¹³CO₂⁺pénètrent en O' dans la chambre d'accélération de déviation (III) où règne un champ magnétique B orthogonal au plan de la figure.

2-1) Montrer qu'ils sont alimentés d'un mouvement circulaire uniforme. Exprimer la distance Di en fonction de O' et l'entrée Oi du collecteur Ci en fonction de e, U, B et m.

Calculer Di pour chaque ion. On donne : $B = 2.5.10^{-2}T$.

2-2) La vitesse de l'ion à la sortie O de la chambre d'ionisation (I) peut être faible et non nulle.

A l'entrée O' de la chambre d'ionisation (II), la vitesse de l'ion varie entre v_o et $v = v_o(1+\varepsilon)$ avec ε très faible devant l'unité.

- 2-2-1) Exprimer en fonction de Di et ε la largeur minimale ℓ_i de la fente du collecteur recevant l'ion.
- 2-2-2) pour ε = 5.10⁻³ calculer la largeur minimale de la fente de chaque collecteur recevant l'ion.

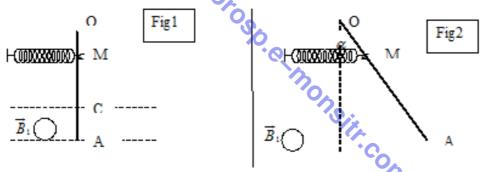
- 2-2-3) En déduire les distances minimale et maximale entre les points d'entrée dans les collecteurs des ions $^{12}\text{CO}_2^+\text{et}$ $^{13}\text{CO}_2^+$.
- 3-) les collecteurs C_1 et C_2 sont munis de détecteurs de charge. Pendant une durée donnée, les quantités d'électricité reçues par les collecteurs C_1 et C_2 sont respectivement 1,08 μ C et 96,21 μ C. Déterminer la composition isotopique de l'échantillon analysé.

(Extrait C.G.S 2006)

EXERCICE

EXERCICE

On donne $\|\vec{g}\| = 10N.Kg^{-1}$


On considère le dispositif représenté sur la figure 1 :

OA est une tige conductrice de longueur OA =L = 40 cm de masse m = 3 g, mobile autour d'une axe horizontal passant par son extrémité O.

L'autre extrémité A est reliée à un fil souple conducteur ne gênant nullement le mouvement possible de la tige.

Cette tige est soumise à l'action d'un champ magnétique uniforme \vec{B}_1 perpendiculaire au plan de la figure de valeur $\|\vec{B}_1\|$ = 0,1 T. Ce champ \vec{B}_1 règne dans une région limitée par AC = I = 10cm.

Au point M de la tige tel que OM = 10 cm est attaché un ressort horizontal ; isolant de raideur K = 23 N. m^{-1} .

Lorsque la tige est traversée par un courant d'intensité I_1 = 10 A ; elle dévie d'un angle α = 8° et se stabilise dans une nouvelle position d'équilibre (voir figure 2).

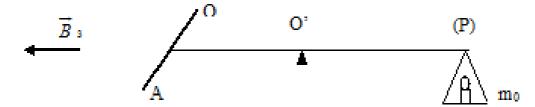
On suppose que la déviation α est faible de façon que la partie plongée dans le champ reste sensiblement la même et le ressort reste horizontal et allongé de Δl .

- 1°) a Indiquer le sens du courant traversant la tige.
 - b Donner les caractéristiques de la force de la place exercée sur la tige.
- 2°) a Faire le bilan des forces exercées sur la tige lorsqu'elle parcourue par le courant 11.
 - b En appliquant le théorème des moments à la tige, déterminer l'allongement du ressort Δl .
- 3°) On enlève le ressort et on superpose au champ \vec{B}_1 un autre champ \vec{B}_2 perpendiculaire au plan de la figure et opposé à \vec{B}_1 .

Le champ \vec{B}_2 règne dans une région de façon que la tige soit totalement plongée dans cette région.

La tige est toujours parcourue par le même courant I_1 = 10 A et dans le même sens que 2°) ;

La déviation de la tige par rapport à la verticale est alors θ = 4°;


- a Faire le bilan des forces exercées sur la tige.
- b Déterminer la valeur du champ magnétique \vec{B}_2 .

4°) Dans cette question la tige OA est isolée du montage précèdent ; elle est liée au bras d'une balance dont les deux bras sont isolants et égaux.

La tige est maintenue horizontale dans un plan perpendiculaire au plan de la figure 3 et elle est parcourue par un courant d'intensité l₃

Ce courant est amené par deux fils souples et de masse négligeable.

La tige est complètement plongée dans un champ \vec{B}_3 horizontal et contenu dans le plan de la figure tel que $\|\vec{B}_3\|$ = 5.10⁻² T.

En l'absence de courant I₃ ; la tige OA et le fléau sont en équilibre horizontaux.

Lorsque la tige est traversée par I_3 ; il faut placer une masse $m_0 = 4$ g sur le plateau P pour rétablir l'équilibre horizontal.

- a Déduire de ces expériences les caractéristiques de la force de Laplace.
- b Préciser le sens du courant I₃et calculer sa valeur. à Schotospe.

EXERCICE

EXERCICE

EXERCICE

EXERCICE 2 (Extrait BAC S1-S3 2004)

<u>1</u> Les niveaux d'énergie quantifiés de l'atome d'hydrogène sont donnés par la relation : $E=-\frac{13,6}{n^2}$ (en eV) où n est un nombre entier supérieur ou égal à 1.

- **1-1** Calculer les énergies de l'atome lorsque n prend les valeurs 1, 2, 3, 4 et pour n→∞ puis représenter le diagramme des niveaux d'énergie de l'atome d'hydrogène à l'échelle 1cm → 1eV.
- 1-2 Calculer l'énergie minimale que l'on doit fournir à l'atome d'hydrogène pour qu'il passe de l'état fondamental un état excité. Représenter la transition correspondante sur le diagramme précédemment
- **2-** Les « atomes » hydrogénites He⁺ et Li²⁺ sont des noyaux entourés d'un seul électron.

Rutherford a décrit le mouvement d'un électron autour d'un noyau contenant Z protons, comme un mouvement circulaire de rayon r.

L'intensité de la force électrique subie par l'électron est de la forme : $f = \frac{ZKe^2}{r^2}$. La force gravitationnelle est négligeable devant la force électrique.

L'énergie mécanique de l'électron est $E = -\frac{ZKe^2}{2r}$ avec K= 910⁹ SI.

- 2-1-Le mouvement de l'électron étant uniforme, montrer que la vitesse V des électrons est donnée par $V = \sqrt{\frac{ZKe^2}{mr}}.$
- 2-2 Selon Niels Bohr l'électron ne peut se déplacer que sur des cercles de rayon r, obéissant à la relation $V_n r_n = \frac{n\mathcal{C}}{m}$ avec n nombre entier supérieur ou égal à 1 : C = 1,054.10⁻³⁴ J.s ; V_n vitesse de l'électron ; r_n le
 - **2-2-1** Exprimer r_n en fonction de Z, K, e, M, c, n et calculer r_1 pour chaque type d'atome.

<u>2-2-2</u> Montrer que E_n s'exprime par $E_n = -\frac{Z^2K^2e^4m}{2C^2n^2}$. Calculer E_1 pour chacun des deux types d'atomes.

En déduire une expression de E_n en fonction de E₁. Données $\frac{m.e^4.K^2}{c^2} = 4,35.10^{-18} J$.

<u>2-2-3</u> On considère les séries contenant les radiations émises par les atomes ionisés He^+ et Li^{2^+} excités (n \geq 3) lorsqu'ils reviennent à l'état n = 2. Calculer en nm l'écart $\Delta\lambda$ entre la plus grande et la plus petite longueur d'onde de chaque série correspondant à chacun de ces atomes.

A partir de ce résultat dire lequel des électrons de ces atomes est le plus lié au noyau correspondant.

Cissoorosp.e. monsiir.com